k-Skip-n-Gram-RF: A Random Forest Based Method for Alzheimer's Disease Protein Identification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(RF) — Random Forest Random Field

We combine random forest (RF) and conditional random field (CRF) into a new computational framework, called random forest random field (RF). Inference of (RF) uses the Swendsen-Wang cut algorithm, characterized by MetropolisHastings jumps. A jump from one state to another depends on the ratio of the proposal distributions, and on the ratio of the posterior distributions of the two states. Prior...

متن کامل

a generalized kernel-based random k-samplesets method for transfer learning

transfer learning allows the knowledge transference from the source (training dataset) to target (test dataset) domain. feature selection for transfer learning (f-mmd) is a simple and effective transfer learning method, which tackles the domain shift problem. f-mmd has good performance on small-sized datasets, but it suffers from two major issues: i) computational efficiency and predictive perf...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

A discriminative method for protein remote homology detection based on N-Gram.

Protein remote homology detection refers to detecting structural homology in proteins with an extremely low rate of sequence similarity. Such detection is primarily conducted using 3 methods: pairwise sequence comparisons, generative models for protein families, and discriminative classifiers. In this study, a discriminative classification method involving N-Grams was adopted to extract feature...

متن کامل

Learning Adjective Meanings with a Tensor-Based Skip-Gram Model

We present a compositional distributional semantic model which is an implementation of the tensor-based framework of Coecke et al. (2011). It is an extended skipgram model (Mikolov et al., 2013) which we apply to adjective-noun combinations, learning nouns as vectors and adjectives as matrices. We also propose a novel measure of adjective similarity, and show that adjective matrix representatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Genetics

سال: 2019

ISSN: 1664-8021

DOI: 10.3389/fgene.2019.00033